Transcript. Ex 7.3, 8 1 − 𝑐𝑜𝑠 𝑥﷮1 + 𝑐𝑜𝑠 𝑥﷯ ﷮﷮ 1 − cos﷮𝑥﷯﷮1 + cos﷮𝑥﷯﷯﷯ We know that Thus, our equation becomes ﷮﷮ 1 − cos﷮𝑥﷯﷮1 + cos﷮𝑥﷯﷯﷯ 𝑑𝑥= ﷮﷮ 2 sin﷮2﷯﷮ 𝑥﷮2﷯﷯﷮2 cos﷮2﷯﷮ 𝑥﷮2﷯﷯﷯﷯ = ﷮﷮ sin﷮2﷯﷮ 𝑥﷮2﷯﷯﷮ cos﷮2﷯﷮ 𝑥﷮2﷯﷯﷯﷯ 𝑑𝑥
Example Give a formula in terms of xfor tan(sin 1(x)) Derivative of sin 1 x. d dx sin 1 x= 1 p 1 2x; 1 x 1: Proof We have sin 1 x= yif and only if siny= x. Using implicit di erentiation, we get cosydy dx = 1 or dy dx = 1 cosy: Now we know that cos 2y+ sin y= 1, hence we have that cos 2y+ x = 1 and cosy= p 1 x2 2

Find the maximum value of f(x), if f(x) = (sec^-1x)^2 + (cosec^-1x)^2 asked Nov 9, 2019 in Sets, relations and functions by SumanMandal ( 55.4k points) inverse trigonometric functions

Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have OK, we have x multiplied by cos (x), so integration by parts is a good choice. First choose which functions for u and v: u = x. v = cos (x) So now it is in the format ∫u v dx we can proceed: Differentiate u: u' = x' = 1. Integrate v: ∫ v dx = ∫ cos (x) dx = sin (x) (see Integration Rules) Now we can put it together: Simplify and solve:

Derivative of cos-1 x (Cos inverse x) Example 24 Important Question 3 Deleted for CBSE Board 2024 Exams

sin (x + y) sin (sin ^-1 x + cos ^-1 y) --> sin (arcsin x + arccos y) = sin (x + y) = = sin x.cos y + sin y.cos x.
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The
MATHS : TRIGONOMETRY : Inverse trigonometric functions Useful for Class 10, class11, class 12 Diploma Sem1 m1 EngineeringCBSE, ICSE, ISC, SSC, HSC, IGCSE, GC .
  • 6obidbo4qw.pages.dev/160
  • 6obidbo4qw.pages.dev/264
  • 6obidbo4qw.pages.dev/567
  • 6obidbo4qw.pages.dev/825
  • 6obidbo4qw.pages.dev/867
  • 6obidbo4qw.pages.dev/813
  • 6obidbo4qw.pages.dev/901
  • 6obidbo4qw.pages.dev/159
  • 6obidbo4qw.pages.dev/495
  • 6obidbo4qw.pages.dev/921
  • 6obidbo4qw.pages.dev/402
  • 6obidbo4qw.pages.dev/920
  • 6obidbo4qw.pages.dev/831
  • 6obidbo4qw.pages.dev/309
  • 6obidbo4qw.pages.dev/475
  • sin 1x cos 1x formula